
Palmtrie: A Ternary Key Matching Algorithm
for IP Packet Filtering Rules

Hirochika Asai
panda@wide.ad.jp
WIDE Project

ABSTRACT
Network security has become crucial to our society and industry.
A firewall is an essential function in network operations for secu-
rity enhancement. Network access control lists (ACLs) have been
used to describe multi-layer security rules to determine whether
a packet is passed or dropped by the firewall. An entry in ACLs
contains so-called don’t care bits, and consequently, ACL matching
is generalized as a ternary matching problem. As ternary matching
typically relies on dedicated hardware, high-performance ternary
matching with commodity CPUs is challenging. We propose a prac-
tical algorithm for network ACL matching trie, named Palmtrie,
that allows the multi-bit stride extension to achieve better perfor-
mance. We evaluate the Palmtrie using synthetic ACLs that emulate
an existing campus network and Internet backbone policies. The
evaluation results demonstrate that the Palmtrie outperforms the
existing ACL matching algorithms on extensive ACLs. For example,
the lookup performance of the optimized Palmtrie achieves 4.76
times faster than the algorithm implemented in the widely used
library (DPDK) for the scanning attack traffic on an ACL with one
million entries. We also prove that the Palmtrie solves the problem
with the build time of data structures in the existing algorithms.

CCS CONCEPTS
•Networks→ Packet classification; • Security and privacy→
Firewalls.

KEYWORDS
ternary matching, packet classification, firewalls, access control list
ACM Reference Format:
Hirochika Asai. 2020. Palmtrie: A Ternary Key Matching Algorithm for IP
Packet Filtering Rules. In The 16th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’20), December 1–4, 2020,
Barcelona, Spain. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3386367.3431289

1 INTRODUCTION
Network security has gained in importance as the Internet has
become a vital infrastructure. Network security devices such as
firewalls have widely been deployed to protect information assets

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7948-9/20/12. . . $15.00
https://doi.org/10.1145/3386367.3431289

from unauthorized network access. Firewalls are categorized into
two types; stateful and stateless firewalls. Stateful firewalls manage
the states of individual flows and apply an action to each packet
acting on the managed state. Some stateful firewalls implement
deep packet inspection. In contrast, stateless firewalls do not store
any states of flows but apply an action to an individual packet using
its header information. Thus, stateless firewalls are generally more
scalable than stateful firewalls.

A network access control list (ACL) is commonly implemented
on network devices as a fundamental stateless firewall function. An
ACL is a set of multi-layer security rules using the header informa-
tion of data communication protocols to filter packets through the
device. ACL matching is generalized as a ternary matching problem.
A challenge in ternary matching lies in the uniqueness of wild-card
bits. In order to handle the wild-card bits, the existing packet clas-
sification algorithms [19, 30, 35] cut the multidimensional space of
ACL rules with wild-card bits and then build a decision tree using
these cuts. However, these algorithms have not achieved acceptable
performance with commodity CPUs and have suffered from the
slowness of build time.

We propose a practical algorithm for ACL matching trie, named
Palmtrie. We design the Palmtrie to support a multi-bit stride that
reduces the trie depth by branching using multi-bit chunks of a
key for better lookup performance. The basic idea of the Palmtrie
is devised from a Patricia trie [24, 29, 31]. However, the originality
and the significance of the Palmtrie mostly lie in this multi-bit
stride extension. The optimized version of the Palmtrie, Palmtrie+,
adopts the technique derived from Poptrie [3] for memory efficiency.
We evaluate the lookup performance using synthetic ACLs that
emulate an existing campus network and Internet backbone policies.
The evaluation results highlight the effectiveness of the multi-bit
stride extension of the Palmtrie. They also demonstrate that the
Palmtrie+ is memory efficient and runs 1.05–4.76 times faster than
the algorithm implemented in the widely used library (DPDK [11])
on ACLs for the campus network policy of various sizes. It also
outperforms the existing algorithms for Internet backbone policies
on extensive ACLs.

ACLs have statically been configured in routers in general. BGP
Flowspec [20], however, allows advertising filtering rules to neigh-
bor routers. They would be dynamically updated [34]. Thus, the
incremental update or rebuild performance also becomes essen-
tial. We also evaluate the build time of the Palmtrie+ for various
sizes of ACLs. The results show that the Palmtrie+ provides exem-
plary performance in building its data structure while the existing
algorithms require unacceptable time on extensive ACLs.

The rest of this paper is organized as follows. We look over
related work in Section 2. We explain the ternary matching problem,
then revisit Patricia trie, and finally describe the data structure

https://doi.org/10.1145/3386367.3431289
https://doi.org/10.1145/3386367.3431289
https://doi.org/10.1145/3386367.3431289

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

and algorithm of a Palmtrie in Section 3. The performance of the
implemented Palmtrie for synthetic ACLs and traffic patterns is
evaluated in Section 4. We discuss the evaluation results and the
real-world deployment of the Palmtrie, including IPv6 support, in
Section 5. We conclude this paper in Section 6.

2 RELATEDWORK
Network devices generally equip content addressable memory
(CAM) or ternary content addressable memory (TCAM) as a lookup
table for various packet forwarding functions. CAM is a type of
dedicated memory for fast exact matching. For example, a MAC
address table utilizes it for Ethernet switching. TCAM is a unique
type of memory for ternary matching whose keys of entries allow
so-called don’t care bits. Longest prefix matching leverages TCAM,
particularly in IP routing. OpenFlow [23] and P4 [7] switches equip
TCAM for their generalized packet forwarding engine. An ACL
used as a stateless firewall function is another application of TCAM.

TCAM has been a standard technology for lookup tables in net-
work devices for a long time [1, 21, 37, 39]. However, it has problems
with its power consumption, heat, monetary cost, and scalability
issues [5, 17]. Moreover, the emergence of network function virtual-
ization (NFV) [13] gains importance in network algorithms running
as software on commercial off-the-shelf (COTS) devices. Fast in-
put/output (I/O) technologies such as DPDK [11] and netmap [27]
with NFV have accelerated the research and development of high-
performance packet forwarding engines on COTS devices.

Many network algorithms have been researched to implement
various network functions on COTS devices instead of dedicated
hardware such as CAM and TCAM. Hash tables such as Cuckoo
Hashing [25] and Hopscotch Hashing [16] have been used for exact
matching. For example, CuckooSwitch [40] adopts Cuckoo Hash-
ing to implement the Ethernet switching function. Many research
studies on longest prefix matching algorithms have also been con-
ducted. Longest prefix matching is a particular case of the ternary
matching problem that don’t care bits follow each prefix, and the
priority is the same as the prefix length. This constraint of longest
prefix matching allows us to devise fast IP routing table lookup
algorithms. Most of the longest prefix matching studies such as
radix tree [9, 18, 29], Patricia trie [24, 29, 31], path-compressed
trie [32], DIR-24-8-BASIC [14], SAIL [36], and Poptrie [3] leverage
search tree data structures. These data structures and algorithms
based on search trees rely on the constraint that longest prefix
matching searches the deepest leaf from a search tree to result in
the highest priority. Another approach of longest prefix matching,
such as DXR [38], handles IP address prefixes as ranges. Fast exact
matching and longest prefix matching algorithms have successfully
been developed. However, the ternary matching problem, including
ACL matching, is still challenging.

Linux iptables and FreeBSD pf adopt the sorted list to per-
form priority encoding in ACL matching. Linux Socket Filtering
(LSF) [28] and the Berkeley Packet Filter (BPF) [22] use a domain-
specific assembly language and implement a just-in-time (JIT) com-
piler to execute the comparison of each ACL entry efficiently. How-
ever, the computational complexity of the sorted list search is the
order of 𝑛, where 𝑛 is the number of entries. Therefore, it is not
scalable to extensive ACLs.

Packet classification algorithms such as HiCuts [15], Hyper-
Cuts [30], EffiCuts [35], and NeuroCuts [19] have been proposed to
use SRAM or DRAM instead of TCAM for ACL matching. To this
end, they cut the multidimensional space of ACL rules and then
build a decision tree with these cuts. As these algorithms do not rely
on TCAM, they can run on commodity CPUs. However, they cannot
achieve good lookup performance on commodity CPUs. Moreover,
these algorithms are not generalized for ternary matching because
they assume that each field in an ACL rule is exact, prefix, or range
matching. Therefore, they do not support ternary matching fields
such as TCP flags.

DPDK [11] implements a packet classification library. It employs
a similar approach to the packet classification algorithms based
on a decision tree [4, 15, 19, 30, 35] to convert an ACL to a single
trie or multiple tries [26]. It also adopts performance optimization
techniques for commodity CPUs such as the multi-bit (8-bit) stride
traversal. However, a significant drawback of this approach is the
build time of the data structure, especially for extensive ACLs. For
example, it takes more than three hours to build the data structure
for an ACL with 279 thousand entries, as we will see in Section 4.4.

3 PALMTRIE
We propose a Palmtrie to solve the ternary matching problem.
We first explain the ternary matching problem and ACLs as the
target application of the ternary matching problem. We then revisit
Patricia tries and explain the basic idea of the Palmtrie that supports
ternary matching by extending a Patricia trie. Based on the basic
idea of Palmtrie, we extend the Palmtrie to improve the lookup
performance with a multi-bit stride. Extending the Palmtrie to
support a multi-bit stride is not straightforward as the other trie
data structures because of don’t care bits in keys. We then analyze
the challenge in extending the Palmtrie to support the multi-bit
stride and thoroughly describe the data structure and algorithm of
the Palmtrie with the multi-bit stride extension.

3.1 Ternary Matching Problem and Access
Control Lists

The ternary matching problem is to find an entry with the highest
priority that matches a given query key in the table. Each entry
of a ternary matching table holds a key, a value, and its priority.
Unlike the exact matching problem, the ternary matching problem
allows wild-card bits, called don’t care bits, in the bit string of the
key in a ternary matching table. In this paper, the bit * in a bit
string represents a don’t care bit. For example, a ternary matching
table might contain a key of 011*1000 that matches any query
keys of 01101000 and 01111000. Note that query keys used to
find matching entries in a table are binary bit strings, i.e., they are
not allowed to contain any don’t care bits. As mentioned above,
a query key might match multiple entries. Therefore, the ternary
matching problem selects an entry with the highest priority from
the matching entries.

To better understand the ternary matching problem, we show an
example of a ternary matching table in Table 1. A higher number
represents a higher priority in this paper. Here, we consider the
case to look up the ternary matching table for the query key of
01110101; the query key of 01110101 matches two entries with

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 1: An example of a ternary matching table. Each entry
stores a key, a value, and its priority. Entry IDs are for the
explanation.

Entry ID Key Value Priority
1 011*1000 1 6
2 1*0***10 2 8
3 0001**** 3 9
4 10110011 4 3
5 0*1101** 5 7
6 1110**** 6 4
7 010010** 7 5
8 01110*** 8 2
9 1******* 9 1

Table 2: An example of an ACL. This ACL permits outgoing
packets from 192.0.2.0/24 incoming ICMP, DNS over UDP,
and established TCP packets to 192.0.2.0/24.

permit ip 192.0.2.0/24 0.0.0.0/0
permit icmp 0.0.0.0/0 192.0.2.0/24
permit udp 0.0.0.0/0 eq 53 192.0.2.0/24
permit tcp 0.0.0.0/0 192.0.2.0/24 established
deny ip 0.0.0.0/0 192.0.2.0/24

keys of 0*1101** and 01110***. Then, we compare their priority
to select an entry with the highest priority. In these two entries,
the entry with the key of 0*1101** (i.e., Entry 5) has the highest
priority, and thus, is finally returned as the lookup result.

Searching for entries from an ACL is one of the applications
of the ternary matching problem. An ACL describes multi-layer
security rules with actions to be applied to each packet. In general,
ACL entries are written up by the following layer 2–4 header infor-
mation; the destination and source Ethernet addresses, EtherType,
IEEE 802.1Q (VLAN) tag information, source and destination IP
addresses, a protocol number, source and destination TCP/UDP
port numbers, and TCP flags. IP addresses are generally specified
by prefix notation. Port numbers may be represented in ranges.
TCP flags are represented as a ternary bit string, consisting of 0, 1,
and *. We exclude layer 2 rules for simplicity and only use layer 3
and 4 rules in the rest of this paper.

Table 2 shows an example of an ACL. This ACL assumes that
192.0.2.0/24 is the internal network and describes the rules to
pass all outgoing packets, incoming ICMP, DNS responses whose
source UDP port is 53, and established TCP packets. Any incoming
packets other than the above rules are dropped. The entries in an
ACL are sorted by priority, i.e., higher priority at the top of the
list. An entry consists of a sequence of action (permit or deny), a
protocol name (any protocols over IP (ip), ICMP (icmp), UDP (udp),
or TCP (tcp)), a source IP address prefix, an optional source port
number range following a range keyword (eq for equal to, etc.) for
layer 4 protocols, a destination IP prefix, an optional destination
port number range following a range keyword, and an optional
keyword established for TCP. The keyword of established de-
notes TCP packets with ACK or RST flags in the TCP header. This

(a) Radix Tree (b) Patricia Trie

Figure 1: Radix tree and Patricia trie for three keys; 1) 100,
2) 001, and 3) 010. The Patricia trie compresses its data struc-
ture by eliminating unary branching nodes from the radix
tree. Instead, the Patricia trie adds a bit index to each node.
Bit indices are denoted by Bit= in the figure. Solid circles and
squares represent nodes with a value and pointers, respec-
tively. Red numbers are the values stored in each node.

means that an ACL entry with the keyword of established is
converted into two ternary matching entries of the TCP flags field,
i.e., ****1**** (ACK) and ******1** (RST). In the same way, a
port range is also converted into multiple entries. The link to the
tool to convert ACL entries to ternary matching entries is referred
to from the Palmtrie source code.

A naive approach to implement ACL matching is searching for
a matching entry from the list sorted by the priority. However, the
computational complexity is of the order of𝑛, where𝑛 is the number
of entries in the list. Therefore, it is not efficient for extensive ACLs.

3.2 Patricia Trie (Revisited)
Search trees have widely been used for finding an entry correspond-
ing to a query key. A radix tree and a Patricia trie are fundamental
search tree data structures. These search trees are called tries. In a
trie, any descendent nodes of a node have a common prefix of the
node. Therefore, a trie is also known as a prefix tree.

In this subsection, we revisit a Patricia trie [24, 29, 31] as the
proposed algorithm and data structure, Palmtrie, is based on a
Patricia trie. A Patricia trie is a fundamental trie data structure
to search a matching data entry corresponding to a given key. A
Patricia trie compresses its data structure by eliminating unary
branching nodes from a radix tree [9, 18, 29].

A radix tree is a simple binary tree. Each branch of a radix tree
adds one bit to the prefix of the parent node. Therefore, the prefix
of a node at a depth of 𝑑 in the tree1 is the 𝑑-bit value of the node.
The lookup procedure of the radix tree is just traversing the tree by
examining the 𝑑-th most significant bit in the given key. Patricia
trie eliminates unary branching nodes from the radix tree. To this
end, a Patricia trie adds a bit index attribute, bit, to each node. The
value bit is used as the bit index to extract a bit from the given key
to determine the branch direction (i.e., left or right). It means that
the bit string of a key from the most significant bit to the bit index
represents the prefix of the node. The number of bits of the key
minus the value bit minus 1 is equivalent to the depth of the radix

1With zero-based numbering. The depth of the root node is defined to be 0.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

Figure 2: An example of a Palmtrie for the dataset in Table 1.
A Palmtrie adds a center branch to each node of the Patricia
trie for a don’t care bit. Circles and squares represent nodes
with a value and pointers, respectively.

tree. In other words, let the bit length of keys and the bit index of a
node bit be 𝐿 and 𝑏, respectively, the most significant (𝐿 − 𝑏) bits
are the prefix in a Patricia trie. For example, the radix tree and the
Patricia trie for keys 100, 001, and 010 are illustrated in Figure 1.
The Patricia trie is memory efficient as the number of nodes in the
Patricia trie equals the number of keys.

The lookup procedure of the Patricia trie is recursively defined.
It traverses the trie by examining the bit in the given key corre-
sponding to the bit index of the node; goes down to the left for 0
or to the right for 1. It terminates the traversal if the bit index of
the node is greater than or equal to the current bit index. It finally
compares the key of the resulting node with the given key then
returns the node if these keys match each other.

For inserting a new node with a given key, the insertion algo-
rithm traverses descendent nodes in the trie to find the position
to insert a new node with the key. It checks if the prefix of the de-
scendent node matches the given key during the traversal. If it does
not match, it replaces the descendent node with a new node and
lets the original descendent node be a descendent node of the new
node. The bit index of the new node is set to the most significant
different bit between these nodes. If it reaches an empty pointer
(NULL), it replaces the pointer to NULL with a new node. The bit
index of the new node is set to 0.

3.3 Basic Idea of Palmtrie
Patricia trie is not limited to binary branches but can construct a
multiway tree such as branching by alphabetic characters. There-
fore, Patricia trie can store keys containing don’t care bits using
ternary branches without changing the construction procedure of
the data structure. Only the search procedure for ternary matching
is different from the original algorithm.

We name the proposed trie that solves the ternary matching
problem, Palmtrie. A node of the basic Palmtrie has three pointers
going down to left, right, and center descendent nodes, a bit index
referred to as bit in figures and algorithms, a key, a value, and its
priority. The branches to left, right, and center descendent nodes
correspond to 0, 1, and *, respectively. Here, we look into an ex-
ample of a Palmtrie for better understanding. Figure 2 illustrates
an example of a Palmtrie for the dataset shown in Table 1. The

Algorithm1 lookup(𝑁 , key, bit); the lookup procedure of Palmtries
for the query key traversing from the node 𝑁 . The function
match(key, 𝑁) returns a boolean value by checking if the given
key matches the ternary string key of 𝑁 . The function extract(key,
off, len) extracts bits of length len from the key, starting at the off-
set off,. The function max(x, y) returns the node with the largest
priority from the given nodes x and y. A NULL node is treated
as the lowest priority. The symbol of ← represents the variable
assignment operator.
1: if 𝑁 = NULL then
2: return NULL;
3: end if
4: if bit ≤ 𝑁 .bit then
5: if match(key, 𝑁) then
6: return 𝑁 ;
7: else
8: return NULL;
9: end if
10: end if
11: c← lookup(𝑁 .center, key, 𝑁 .bit);
12: if extract(key, 𝑁 .bit, 1) then
13: lr← lookup(𝑁 .right, key, 𝑁 .bit);
14: else
15: lr← lookup(𝑁 .left, key, 𝑁 .bit);
16: end if
17: return max(lr, c);

insertion and deletion algorithms of a Palmtrie are the same as
those of the original Patricia trie. The lookup procedure is different
from the original Patricia trie due to the uniqueness of a don’t care
bit that matches both 0 and 1. Note that a don’t care bit is handled
as a ternary value that does not match 0 or 1 in the insertion and
deletion procedures.

The lookup() function is recursively defined in Algorithm 1. It is
called with three arguments to perform a lookup; the root node for
the first argument 𝑁 , the query key for the second argument key,
and 𝐿 − 1 for the third argument bit. The algorithm goes down to
the center node for a don’t care bit of the stored keys (Line 11) as it
matches any of 0 and 1. It is one of the differences from Patricia
tries. In addition, it also performs exact matching for the left or
the right branches (Lines 12–16). With this recursive procedure, it
performs the comparison of the query key and the key stored in the
entry (Line 5) when the descendent node pointer goes back up to
the trie (Line 4). As multiple entries might match the query key, it
also performs priority encoding to select an entry with the highest
priority from the matching entries (Line 17). This priority encoding
is another difference from Patricia tries.

For the further explanation of Palmtrie variants, we refer to this
Palmtrie as the basic Palmtrie or Palmtrie (basic). We also define
two terms as follows; exact matching branch and don’t care branch.
The former denotes the traversal to the descendent node uniquely
identified from the bit or the chunk extracted from the query key by
the bit index. The latter denotes the traversal to a branch containing
one or more don’t care bits in the extracted bit or chunk of bits. In
Algorithm 1, Line 11 and Lines 12–16 are don’t care branch and
exact matching branch, respectively.

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 3: Computational complexity of lookup, insertion and
deletion procedures of the sorted list and the Palmtrie.

Algorithm Lookup Insertion / Deletion
Sorted List O(𝑛) O(𝑛) or O(log2 𝑛)
Palmtrie O(𝑛log3 2) O(log3 𝑛)

Here, we look through the lookup procedure for the query key of
01110101 to the Palmtrie in Figure 2. We begin the traversal from
the root node, Node 2. It first traverses to the don’t care branch
of the root node. The don’t care branch reaches NULL, and then
it terminates the traversal. It also traverses to the left descendent
node, Node 3, for the exact matching branch corresponding to the
7th bit of the query key, 0. It goes down from Node 3 to Node 5 and
gets Node 5 as a candidate result at the don’t care branch from Node
5. It then compares the query key of 01110101 with the key stored
in Node 5 of 0*1101**. As these keys match, Node 5 is returned as
a candidate result for the don’t care branch from Node 3.

Moving back from the stack to the exact matching branch from
Node 3, it traverses to the right descendent node, Node 7, for the
exact matching branch corresponding to the 6th bit of the query key,
1. As the center descendent node of Node 7 is NULL, it terminates
the traversal to the don’t care branch. For the exact matching branch
from Node 7, it goes down to the right descendent node, Node 8, as
the 5th bit of the query key is 1. Node 1 is traversed for the don’t
care branch from Node 8. As the bit index of Node 1 is 0, it finds
NULL at the right descendent node for the exact matching branch
corresponding to the 0th bit of the query key 1. From Node 8, it also
traverses the right descendent node for the exact matching branch
corresponding to the 4th bit of the query key, 1, and finally obtains
Node 8 as another candidate result. The key stored in Node 8 of
011*1000 matches the query key of 01110101, and consequently,
Node 8 is returned as a candidate result for the exact matching
branch from Node 3. Comparing the priority of two candidate
results from Node 3, Nodes 5 and 8, the priority of Node 5 is higher
than that of Node 8. Accordingly, we obtain Node 5 as a result.

Here, we discuss the computational complexity of the basic
Palmtrie lookup algorithm. Let the height (i.e., maximum search
depth) of a Palmtrie be 𝑑 , and the number of steps to traverse the
left or right triangle for the exact matching branch or the center
triangle for the don’t care branch be 𝑐𝑑 , 𝑐𝑑 is defined by the follow-
ing recurrence formula: 𝑐𝑑 = 2𝑐𝑑−1. By solving this formula, we
obtain 𝑐𝑑 = 𝑐0 · 2𝑑 . Assuming a dense Palmtrie, the height of the
Palmtrie is considered 𝑑 = log3 𝑛, where 𝑛 denotes the number of
entries because the Palmtrie is a ternary tree. Thus, the computa-
tional complexity of the Palmtrie lookup algorithm is calculated
as O(2log3 𝑛), which equals to O(𝑛log3 2) ≈ O(𝑛0.63). In the worst
case of a sparse and unbalanced trie, the computational complexity
becomes O(𝑛) but is bound to O(𝐿2).

Table 3 summarizes the theoretical computational complexity
of the sorted list and the Palmtrie. The complexity of the Palmtrie,
O(𝑛log3 2), is significantly lower than that of the sorted list, O(𝑛).
Thus, the Palmtrie is considered more scalable compared to the
sorted list. We will evaluate the lookup performance for various
datasets and traffic patterns in Section 4.

3.4 Multi-bit Stride Extension
The recursive lookup procedure of the basic Palmtrie is executed bit
by bit for a query key. Therefore, it requires many comparison and
memory load operations, up to the bit length of keys for a query, to
traverse the tree. It leads to the slowness of the lookup algorithm.
We introduce a multi-bit stride that is a common performance
improvement technique. A multi-bit stride reduces the depth of the
trie and the number of steps to search down the trie. For example,
Tree BitMap [12] for longest prefix matching adopts a 4-bit stride.

A simple approach to construct a Palmtrie with a multi-bit stride
is to extend a ternary trie to a 3𝑘 -way trie where 𝑘 is the stride size.
However, this multi-bit stride extension of Palmtries creates many
descendent nodes and leads to a scalability issue. The number of
descendent nodes of a Palmtrie for a 𝑘-bit stride is 3𝑘 while that of a
binary trie is 2𝑘 . Thus, a Palmtrie creates (3/2)𝑘 times more descen-
dent nodes than a binary trie for a 𝑘-bit stride. Moreover, (3𝑘 − 2𝑘)
nodes of the descendent nodes of a 𝑘-bit stride Palmtrie contain one
or more don’t care bits, and consequently, need additional traversal
to these nodes for don’t care branches.

Let
(𝑛
𝑟

)
be the binomial coefficient, i.e., the number of combina-

tions of 𝑛 things taken 𝑟 at a time,
(𝑘
𝑖

)
descendent nodes need to be

traversed for don’t care branches when 𝑖 bits of the chunk to the
descendent nodes are don’t care bits. This means that

∑𝑘
𝑖=0

(𝑘
𝑖

)
de-

scendent nodes including the exact matching branch are traversed.
It adds to the computational complexity of the Palmtrie lookup
procedure. Moreover, it is not memory efficient because many of
these descendent nodes are possibly empty (i.e., NULL). Thus, the
multi-bit stride extension to Palmtries is challenging.

For example, assuming 𝑘 = 3, the number of descendent nodes
of this naive Palmtrie node is 27. The 8 of the 27 descendent nodes
are exact matching branches, and thus, one of them is uniquely
selected from the query key chunk of the 3-bit stride. The rest 19
of the 27 descendent nodes include one or more don’t care bits in
the key chunks of the 3-bit stride. Therefore, we need to check and
traverse these 19 descendent nodes for the query key chunk of the
3-bit stride. We can exclude the 11 nodes of these 19 descendent
nodes by matching the binary bits of the key chunk, but the rest 7
descendent nodes still need to be traversed for don’t care branches.

We focus on the most significant don’t care bit in the chunk of
keys to reduce the number of descendent nodes and simplify the
traversal for don’t care branches. We combine don’t care branches
that contain one or more don’t care bits at any positions other than
the least significant bit in the 𝑘-bit chunk of a key into a don’t care
branch of a subtree that allows only one don’t care bit at the least
significant bit. This means that the stride size for the combined
don’t care branches is less than 𝑘 . For example of 𝑘 = 3, we combine
0*0, 0**, and 0*1 into 0*, 1*0, 1**, and 1*1 into 1*, and *00, *01,
*10, *11, *0*, *1*, **0, **1, and *** into *. Otherwise, we keep
four don’t care branches that have a don’t care bit at the least
significant bit of the 3-bit chunk.

Figure 3 depicts part of a 𝑘-bit stride Palmtrie where 𝑘 = 3.
Eight filled black nodes are the descendent nodes of the root for the
exact matching branch. Seven filled red nodes are the descendent
nodes for the don’t care branch for those including don’t care bits.
On traversing the trie, one filled black node is selected from a 𝑘-
bit chunk of the query key. Besides, 𝑘 filled red nodes are also

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

Figure 3: Part of a 3-bit stride Palmtrie. Solid black edges are
the exact matching branches of 𝑘-bit stride Palmtrie. Dot-
ted circles and edges are the nodes and the edges of the ba-
sic Palmtrie, respectively. Eight filled black nodes at the bot-
tom and seven filled red nodes are the descendent nodes of
the root for the exact matching branch and the don’t care
branch, respectively. Light blue triangles are subtrees.

traversed for the don’t care branch. The search for gray dotted
circles in subtree triangles below filled red nodes are combined
into the don’t care branch to these filled red nodes. Purple solid
arrows in this figure represent the search procedure for the don’t
care branches. By applying the right bit shift operation to the value
of a chunk, the prefix excluding the least significant * bit of the
don’t care branch is obtained.

In otherwords, the stride size for traversing to don’t care branches
is changed according to the position of the most significant don’t
care bit in a 𝑘-bit key chunk. Note that the stride size to get a query
key chunk is the fixed length of 𝑘 , although part of the chunk is
used for don’t care branches. This flexibility of the stride size leads
to an alignment mismatch to the key length. Therefore, a bit index
for the least significant chunk of a key allows a negative value
greater than −𝑘 . A bit indexed by a negative value is treated as 0
in extracting a chunk.

It requires to modify the insertion algorithm. As the prefix of a
subtree for a don’t care branch ends with *, the bit position of *
can be the bit index for don’t care branches. It means that the * bit
must be the root of a subtree. Therefore, a key is first split between
the position of * and one less significant bit position. Besides, the
binary string part of the key is split by 𝑘-bit chunks. In this way,
the key to insert is split into chunks, and the insertion algorithm
traverses the trie to find the position to insert by checking the
prefix of subtrees. Other than the key split method, the insertion
algorithm follows that of Patricia tries described in Section 3.2.

Figure 4 illustrates a 𝑘-bit stride Palmtrie for the dataset in Ta-
ble 1. Red solid arrows in Figure 4 represent the search procedure
to don’t care branches. We look at the lookup procedure for the
query key of 01110101 to the Palmtrie shown in Figure 4. As the
bit index of the root node, Node 2, is 5, it extracts 3 bits from the 7th
to 5th bits, 011. It first traverses don’t care branches from the root
node for 01*, 0*, and *. A don’t care branch for 0* has a descendent
node of Node 5. The query bit chunk of 101 is extracted as the bit

index of the node is 2. Then, it traverses don’t care branches from
the node. The descendent node for * points to Node 5 itself, and
then it is returned as a candidate result. The exact matching branch
from the root node goes down to Node 8. The bit index of the node
is 2, and then the query bit chunk is 101. The descendent node for
* points to Node 1. The descendent node for 10* points to Node 8
itself. Thus, Node 8 is a candidate result. Comparing the priority of
two candidate results, Nodes 5 and 8, Node 5 is returned as it has a
higher priority. Moving back to Node 1, the bit index of Node 1 is
-1, then the chunk of 010 is extracted. All of the descendent nodes
for don’t care branches and the exact matching branch for 010 are
NULL, then none of the descendent nodes of Node 1 is a candidate
result. In this way, it finally returns Node 5 as a result.

3.5 Practical Optimization Techniques
Practical optimization techniques must be taken into account to
achieve good performance. This subsection describes three practical
optimization techniques for Palmtries; 1) efficient descendent node
indexing, 2) a CPU cache efficient search procedure, and 3) low-
priority subtree skipping.

As described in the previous subsection, a 𝑘-bit stride Palmtrie
node has 2𝑘 descendent nodes for the exact matching branch and
2𝑘 − 1 descendent nodes for the don’t care branch. To efficiently
perform the traversal to exact matching branches and don’t care
branches, they are required to be indexed by a chunk or any values
easily computed from the chunk. Figure 5 illustrates the data struc-
ture of the pointers to descendent nodes of Palmtrie. The pointers
organize two contiguous arrays; one is for exact matching branches,
and the other is for don’t care branches. The array for exact match-
ing branches is uniquely indexed by the chunk of a key. The array
for don’t care branches is indexed so that the index of the array for
the prefix is defined by the following equation: 2𝑙 + 𝑝 − 1, where
𝑙 and 𝑝 are the prefix length of binary digits and the prefix of bi-
nary digit part, respectively. This allows efficient don’t care branch
traversal. Tree BitMap [12] employs a similar indexing technique.

The second practical optimization takes into account thememory
locality. The lookup procedure of a Palmtrie is a depth-first search,
as shown in Algorithm 1. It first searches the don’t care branch
and then goes down to the exact matching branch. In Lines 12–
16 of Algorithm 1, 𝑁 .bit, 𝑁 .left, and 𝑁 .right refer to the member
variables of 𝑁 . However, the data of 𝑁 is possibly evicted from the
CPU cache during the traversal to the center in Line 11. It might
cause cache misses in Lines 12–16 for the exact matching branch.
To efficiently utilize the CPU cache, we push a descendent node
and 𝑁 .bit to the self-managed stacks so that 𝑁 is not referred to
again for the exact matching branch.

The other optimization is low-priority subtree skipping. This op-
timization adds the highest priority of the subtree, max_priority,
to each node when building the data structure. The lookup proce-
dure skips the traversal to the subtree if the priority of the current
candidate node is higher than this max_priority of the subtree.

Algorithm 2 is the lookup algorithm of the Palmtrie with the
multi-bit stride extension and these practical optimization tech-
niques. In this algorithm, Lines 14 and 16 are traversals to the don’t
care branches with efficient descendent node indexing. Lines 2,
4, 12, and 18 are the second optimization for efficient CPU cache

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Figure 4: An example of a 𝑘-bit stride Palmtrie (𝑘 = 3) for the dataset in Table 1. Each filled circle denotes a node with a value.
The value and the bit of interest are denoted on a node. Red solid arrows represent links for don’t care branches. Blue dotted
arrows represent backtrack links pointing to resulting nodes whose keys are compared with a query key.

Figure 5: Two contiguous arrays of pointers to descendent
nodes (𝑘 = 3). The array for the exact matching branch con-
tains 2𝑘 elements, and one of them is traversed. The array
for the don’t care branch contains 2𝑘 − 1 elements, and 𝑘 el-
ements of them are traversed.

utilization using the self-managed stacks. Line 5 is low-priority
subtree skipping. Hereafter, we call this variant Palmtrie𝑘 , where 𝑘
denotes the stride size.

3.6 Palmtrie+: Lookup Optimization with
Population Count

Each node of Palmtrie𝑘 requires (2𝑘+1−1) pointers for exact match-
ing branches and don’t care branches. However, as we can see in
Figure 4, nodes of Palmtrie𝑘 have many NULL pointers, each of
which typically requires 4 or 8 bytes. These pointers significantly
increase the memory footprint of the data structure and lead to
inefficient CPU cache utilization. For example, when the stride size
𝑘 is 8, and the pointer size is 8 bytes, each node allocates more than
4 kilobytes of memory.

To cope with this, we leverage sets of a bitmap and a contiguous
array of descendent nodes [3, 12]. They remove the NULL pointers
and compress the pointers with a representative pointer to the
descendent node array. Each bit in the bitmap indicates whether
the corresponding descendent node is a non-NULL value by a bit
of 1 or NULL by a bit of 0. The bitmap is also used to locate the
descendent node corresponding to an index with the population
count operation. Poptrie [3] leverages the popcnt CPU instruction
to speed up the population count operation.

Derived from Poptrie, we use an array of descendent nodes in-
stead of pointers to compress the data structure. A contiguous array
can be compressed with a bitmap in the same way as Poptrie. A de-
scendent node in the compressed array is indexed by the bitmap and
the population count operation: A descendent node corresponding

Algorithm 2 lookup(𝑁 , key); the lookup procedure of Palmtrie𝑘
for the query key traversing from the node𝑁 . Themember variables
of a node, descendants and ternaries, are the contiguous arrays for
the exact matching branch and the don’t care branch, respectively.
p and b are stack variables. « and » represent left bit shift and right
bit shift operations, respectively.
1: 𝑟 ← NULL; p← []; b← [];
2: p[0]← 𝑁 ; b[0]← 𝐿 - 𝑘 ; 𝑛← 1;
3: while 𝑛 > 0 do
4: 𝑛← 𝑛 - 1; 𝑥 ← p[𝑛]; bit← b[𝑛];
5: if 𝑟 .priority ≤ 𝑥 .max_priority then
6: if bit ≤ 𝑥 .bit && match(key, 𝑥) then
7: 𝑟 ← max(𝑟 , 𝑥);
8: else
9: 𝑖 ← extract(key, 𝑥 .bit, 𝑘);
10: 𝑐 ← 𝑥 .descendants[𝑖];
11: if 𝑐 ≠ NULL then
12: p[𝑛]← c; b[𝑛]← 𝑥 .bit; 𝑛← 𝑛 + 1;
13: end if
14: 𝑜 ← (𝑖 » 1) | (1 « (𝑘 - 1));
15: for 𝑖 ∈ {0, . . . , 𝑘 − 1} do
16: 𝑡 ← 𝑥 .ternaries[(𝑜 » 𝑖) - 1];
17: if 𝑡 ≠ NULL then
18: p[𝑛]← 𝑡 ; b[𝑛]← 𝑥 .bit; 𝑛← 𝑛 + 1;
19: end if
20: end for
21: end if
22: end if
23: end while
24: return 𝑟 ;

to the 𝑖-th element of the original array is indexed by the number
of 1s in the least significant 𝑖 bits of the bitmap for the contiguous
array of nodes. The use of a contiguous array for descendent nodes
instead of pointers disallows any nodes to point back up to the
trie. Therefore, we push the nodes with keys and values to the
leaves of the trie. Instead, the internal nodes only retain descendent
nodes for exact matching and don’t care branches. It is similar to
the relationship between B-tree [6, 18] and B+ tree [18]. Thus, we
name this Palmtrie+.

Algorithm 3 shows the lookup algorithm of Palmtrie+
𝑘
, where 𝑘

is the stride size. A node of a Palmtrie+
𝑘
is a union data structure, as

illustrated in Figure 6. The bit index attribute of a node is used to
determine whether the node is an internal node or a leaf; −∞ for a

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

Algorithm 3 lookup(𝑇 , key); the lookup procedure of Palmtrie+
𝑘

for the query key traversing from the root 𝑇 .root. 𝑇 is the trie data
structure that maintains nodes.
1: 𝑟 ← NULL; p← []; b← [];
2: p[0]←𝑇 .root; b[0]← 𝐿 - 𝑘 ; 𝑛← 1;
3: while 𝑛 > 0 do
4: 𝑛← 𝑛 - 1; 𝑥 ← p[𝑛]; bit← b[𝑛];
5: if 𝑟 .priority ≤ 𝑥 .max_priority then
6: if 𝑥 .bit = −∞ && match(key, 𝑥) then
7: 𝑟 ← max(𝑟 , 𝑥);
8: else
9: 𝑖 ← extract(key, 𝑥 .bit, 𝑘);
10: if (1 « 𝑖) & 𝑥 .bitmap_c then
11: 𝑗 ← popcnt(((1 « 𝑖) - 1) & 𝑥 .bitmap_c);
12: 𝑐 ←𝑇 .nodes[𝑥 .offset_c + 𝑗];
13: if 𝑐 ≠ NULL then
14: p[𝑛]← c; b[𝑛]← 𝑥 .bit; 𝑛← 𝑛 + 1;
15: end if
16: end if
17: 𝑜 ← (𝑖 » 1) | (1 « (𝑘 - 1));
18: for 𝑖 ∈ {0, . . . , 𝑘 − 1} do
19: ℎ← (𝑜 » 𝑖) - 1;
20: if (1 « ℎ) & 𝑥 .bitmap_c then
21: 𝑗 ← popcnt(((1 « ℎ) - 1) & 𝑥 .bitmap_t);
22: 𝑡 ←𝑇 .nodes[𝑥 .offset_t + 𝑗];
23: p[𝑛]← 𝑡 ; b[𝑛]← 𝑥 .bit; 𝑛← 𝑛 + 1;
24: end if
25: end for
26: end if
27: end if
28: end while
29: return 𝑟 ;

Figure 6: The data structure of a node of Palmtrie+. A node
of Palmtrie+ is a union data structure identified by the bit
index attribute; −∞ for a leaf and the other value greater
than −𝑘 for an internal node. An internal node has two sets
of a bitmap and an offset to point to descendent node arrays
for exact matching branches and don’t care branches. The
bitmap indexes the corresponding descendent node in the
same way as Poptrie.

leaf. Note that we use −𝑘 instead of −∞ in the implementation as
commodity CPUs do not support −∞ for an integer value, and the
bit index attribute for an internal node must be greater than −𝑘 .
Attributes offset_c and offset_t of a node are offsets for exact match-
ing branches and don’t care branches, respectively. These offsets are

used as indices to locate the position of the array in a contiguous ar-
ray of nodes maintained by the Palmtrie+

𝑘
. Attributes bitmap_c and

bitmap_t of a node represent bitmaps for exact matching branches
and don’t care branches, respectively.

As Palmtrie+
𝑘
pushes the nodes with keys and values to the

leaves of the trie and forms contiguous arrays for descendent nodes,
Palmtrie+

𝑘
does not support the incremental update. However, it is

easy to build Palmtrie+
𝑘
from Palmtrie𝑘 because the tree structure

of Palmtrie+
𝑘
is the same as that of Palmtrie𝑘 . Therefore, the update

procedure of Palmtrie+
𝑘
first performs the incremental update of

Palmtrie𝑘 and then builds Palmtrie+
𝑘
from Palmtrie𝑘 . To be more

precise, the insertion and deletion of an ACL entry require rebuild-
ing the data structure of Palmtrie+

𝑘
from Palmtrie𝑘 , although the

update for an existing key can be incrementally performed.

4 EVALUATION
We implemented the lookup and update algorithms of Palmtries.
The code is available at https://github.com/pixos/palmtrie. For the
evaluation, the key length 𝐿 is set to 128 bits to suffice for IPv4
layer 3–4 ACL rules. A key consists of two-bit strings, data and
mask, which represent binary digits and don’t care bits, respectively.
Therefore, 256 bits (32 bytes) are used in total for a key. We allo-
cate 8 bytes and 4 bytes for a value and a priority, respectively. To
compare with the existing algorithms for ACLmatching, we also im-
plemented the sorted list and employed the examples/l3fwd-acl
program from DPDK version 18.11 (DPDK-ACL) and EffiCuts [35]2.
To validate the correctness of the code, we have run tests that com-
pare the lookup results of Palmtries with those of the sorted list
and have confirmed they match with each other.

We use a computer equippedwith Intel(R) Core i7 6700K (4.0 GHz,
8 MB cache) and 32 GB memory (four 8 GB DDR4-2133 modules)
with Ubuntu 16.04.6 LTS (Linux kernel 4.4.0-146) for the evaluation.
The performance measurement program runs on a single CPU core.
It counts the number of lookups while repeatedly calling the lookup
function of each algorithm with a traffic pattern for 300 seconds.
This program reports the lookup counts every 10 seconds to analyze
the performance statistically. Thus, we obtain 30 samples of 10-
second intervals for each measurement. In figures of the lookup
performance evaluation, we plot the average lookup rate in mega
lookups per second (Mlps), and an error bar represents the standard
deviation of the 30 samples.

4.1 ACL Datasets and Traffic Patterns
We use two types of ACLs that emulate different policies for the
evaluation; 1) a synthetic campus network consisting of multiple
departments and laboratories, and 2) ClassBench [33]. The former
datasets are emulating firewall rules of an existing campus network.
The latter datasets include various address spaces, and thus, are
targeting Internet backbone routers.

For the campus network policy, an ACL is generated by splitting
10.0.0.0/8 into equal size of 2𝑞 prefixes for 𝑞 ∈ {0, . . . , 16}. Let
a split prefix be P, the ACL permits all outbound traffic from P,
and inbound ICMP packets to P. It also permits inbound DNS and
NTP responses and established TCP traffic. The first /27 region of
2We use the code at https://github.com/kun2012/compressedcut to measure the per-
formance of EffiCuts.

https://github.com/pixos/palmtrie
https://github.com/kun2012/compressedcut

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 100 1000 10000 100000 1x10
6

L
o
o

k
u
p

 r
a

te
 [

M
lp

s
]

of entries

Palmtrie (basic)
Palmtrie1 (w/o skipping)

Palmtrie1
Palmtrie

+
8 (w/o skipping)

Palmtrie
+

8

Figure 7: Lookup performance of Palmtrie (basic), Palmtrie1
and Palmtrie+8 without low-priority subtree skipping (w/o
skipping), Palmtrie1, and Palmtrie+8 on various sizes ofACLs
for the uniform traffic.

P is set to the demilitarized zone (DMZ), i.e., passing any traffic.
The second /27 region of P is set for services to permit incoming
DNS, HTTP, HTTPS, QUIC, SMTP, POP3, IMAP, IMAPS, and POP3
traffic. We define the dataset for 𝑞 as 𝐷𝑞 . The number of entries
in the ACL of 𝐷𝑞 is 17 · 2𝑞 . As the entries for each split prefix P
include one entry with the established keyword, the number of
ternary matching entries is 18 · 2𝑞 .

We generate two synthetic patterns of traffic for the evaluation
with the campus network ACLs; 1) uniform and 2) reverse-byte
order scanning. The uniform traffic pattern is generated so that the
pattern uniformly and randomly results in each entry. It is one of the
most challenging traffic patterns because we cannot leverage the
entry caching technique due to randomness. The reverse-byte order
scanning traffic is based on a real scanning attack pattern observed
on the Internet [10]. It consists of incoming TCP SYN packets with
the destination port of 5060 (SIP). The reverse-byte order of destina-
tion addresses is sequential within the range of 10.0.0.0/8; i.e., the
sequence of · · · , 10.255.0.0, 10.0.1.0, 10.1.1.0, · · · . Random
source addresses and port numbers are assigned. The reverse-byte
order scanning is a more realistic traffic pattern than the uniform
pattern where ACLs are used.

We also employ ClassBench [33] to generate Internet backbone
ACLs and traffic patterns. We generate 18 sets of ACL rules and
traces using three parameter files; acl1_seed (ACL), fw2_seed
(FW), and ipc2_seed (IPC). Note that we do not use fw1_seed and
ipc1_seed because EffiCuts with the default parameters failed to
build the data structure for the ACLs generated with these param-
eter files. We generate six sets for each parameter file with the
number of rules of 1K, 10K, 50K, 100K, 200K, and 500K. The prefix
and suffix of the dataset name denote the parameter file and the
number of rules, respectively; e.g., FW100K is a 100K-entry ACL
generated with fw2_seed.

4.2 Effect of Optimizations in Palmtrie
We first evaluate the effect of the practical optimization techniques
introduced in Section 3.5. Here, we compare the lookup perfor-
mance between Palmtrie (basic) and Palmtrie1. Figure 7 shows the
lookup performance for the uniform traffic. It demonstrates that

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8

L
o
o

k
u
p

 r
a

te
 [

M
lp

s
]

Stride size (k)

D0
D2
D4

D6
D8

D10

D12
D14
D16

Figure 8: Lookup performance of Palmtrie𝑘 for the uniform
traffic where 𝑘 = 1, · · · , 8. Palmtrie8 achieves the best perfor-
mance on 𝐷2, 𝐷4, 𝐷8, 𝐷10, 𝐷12, 𝐷14, and 𝐷16.

Palmtrie1 improves the lookup performance by 4.32%–49.6% com-
pared to Palmtrie (basic). The improvement is remarkable for ACLs
with a small number of entries. It is because the cache efficiency
yielded by self-managed stacks is more critical on smaller ACLs.
This figure also shows the disadvantage of low-priority subtree
skipping. The 6.6% degradation of Palmtrie+8 for the uniform traffic
on the one-million-entry ACL (D16) is much higher than expected
from the branch misprediction added by low-priority subtree skip-
ping (Line 5 in Algorithms 2 and 3). We suspect that traversing
to the skipped subtrees avoids cache eviction for frequently vis-
ited nodes. Although we observed this small lookup performance
degradation for the campus network ACLs, we confirmed that low-
priority subtree skipping contributed to the lookup performance
for the ClassBench datasets. For example, Palmtrie+8 runs 1.32–
5.40 times faster than that without low-priority subtree skipping.
Therefore, we adopt low-priority subtree skipping in the Palmtrie.

We then evaluate the effect of the multi-bit stride extension.
Figure 8 summarizes the lookup performance of Palmtries𝑘 at vari-
ous factors of 𝑘 for the uniform traffic. This figure shows that the
highest branching order with the stride size of 𝑘 = 8 achieves the
best performance on extensive ACLs (e.g., 𝐷8, 𝐷10, 𝐷12, 𝐷14, and
𝐷16) while the lower branching order does on tiny ACLs (𝐷0). It
is attributed to the cache efficiency that memory locality is more
effective on smaller ACLs than the effect of depth reduction by
the higher branching order. These results also suggest aligning the
stride size to 8 bits because the size of elements of an ACL entry
such as IP addresses and port numbers is byte-aligned. The 6-bit
stride also achieves good performance because the register size for
indexing with a bitmap fits the 64-bit CPU architecture. Hereafter,
we evaluate 𝑘 = 6 and 𝑘 = 8 for the evaluation in the rest of the
paper from these results.

We also evaluate the memory utilization of Palmtrie and its
variants in this subsection. As described in Section 3.6, Palmtrie𝑘
requires a significant amount of memory when the stride size of 𝑘
increases. Thus, Palmtrie+ adopts a technique to reduce the mem-
ory footprint. Figure 9 shows the memory utilization of Palmtrie1,
Palmtrie6, Palmtrie8, Palmtrie+6 , and Palmtrie+8 , for the campus net-
work ACLs. This figure demonstrates that the memory utilization
of Palmtrie and its variants is proportional to the number of ACL
entries. However, Palmtrie6 and Palmtrie8 consumes 12 and 47

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 10 100 1000 10000 100000 1x10
6

M
e
m

o
ry

 u
ti
liz

a
ti
o
n

 [
M

iB
]

of entries

Palmtrie1
Palmtrie6
Palmtrie8

Palmtrie
+

6
Palmtrie

+
8

Figure 9: Memory utilization (1 MiB = 220 bytes). Palmtrie𝑘
requires a large amount of memory. Palmtrie+

𝑘
reduces the

memory utilization, which is the same order as Palmtrie1.

times more memory than Palmtrie1, respectively. In contrast, the
memory utilization of Palmtrie+6 and Palmtrie+8 is almost the same
as that of Palmtrie1. It proves that the technique introduced in
Palmtrie+ successfully solves the problem with excessive memory
utilization caused by the multi-bit stride extension.

4.3 Lookup Performance
This subsection evaluates the lookup performance of Palmtries
comparing to the existing algorithms on two different datasets; the
synthetic campus network ACLs and ClassBench datasets.

We first evaluate the lookup performance on the campus net-
work ACLs. Figure 10 shows the lookup performance of Palmtrie6,
Palmtrie8, Palmtrie+6 , Palmtrie+8 , and two conventional algorithms,
the sorted list, and DPDK-ACL, for the uniform traffic and the
reverse-byte order scanning traffic on various ACLs. The lookup
performance of the sorted list is significantly degraded on the ACLs
with a large number of entries because its computational complexity
for lookup is𝑂 (𝑛). Palmtrie+8 runs 9.52× 103 times and 2.39× 104
times faster than the sorted list on 𝐷16 for the uniform traffic and
the reverse-byte order scanning traffic, respectively. However, the
sorted list outperforms Palmtrie+8 on 𝐷0, 𝐷1, and 𝐷2. This is attrib-
uted to predictive sequential memory access in the sorted list. It
might take advantage of hardware prefetching of CPU caches.

Figure 10 demonstrates that Palmtrie+8 outperforms DPDK-ACL
on all ACLs for the uniform traffic and the reverse-byte order scan-
ning traffic. The average lookup performance of Palmtrie+8 is 1.05–
2.58 times and 1.17–4.76 times faster than DPDK-ACL for the
uniform traffic and the reverse-byte order scanning traffic, respec-
tively. The characteristics of each algorithm for the reverse-byte
order scanning traffic are similar to that for the uniform traffic.
However, these results highlight the advantage of Palmtrie+ com-
pared to DPDK-ACL as the reverse-byte order scanning traffic is a
more realistic traffic pattern compared to the uniform traffic.

These results practically suggest to use the sorted lists for very
small ACLs (e.g., less than 50 entries), the Palmtrie with lower
branching order such as Palmtrie+6 for medium size of ACLs (e.g.,
less than 1000 entries), and the Palmtrie with higher branching

Table 4: Lookup performance comparisons for ClassBench
datasets. The lookup rate is listed in Mlps.

Dataset EffiCuts DPDK-ACL Palmtrie+8
ACL1K 0.247 11.8 10.4
ACL10K 0.223 10.7 9.43
ACL50K 0.202 2.44 4.57
ACL100K 0.202 1.83 3.57
ACL200K N/A 1.67 5.08
ACL500K N/A 1.66 5.35
FW1K 0.171 10.0 6.33
FW10K 0.162 9.35 3.74
FW50K 0.173 4.51 3.33
FW100K 0.166 2.93 2.72
FW200K 0.156 2.30 2.46
FW500K 0.146 3.00 7.25
IPC1K 0.388 11.4 11.3
IPC10K 0.381 8.96 9.56
IPC50K 0.381 4.32 9.29
IPC100K 0.347 2.75 6.43
IPC200K 0.310 2.30 5.77
IPC500K 0.248 2.65 7.83

order such as Palmtrie+8 for large size of ACLs. However, as we
can see that Palmtrie+6 runs faster than Palmtrie+8 on D16 for the
reverse-byte order scanning traffic, we need further research for
an optimal branching order.

We also evaluate the lookup performance with another type of
synthetic datasets using ClassBench. In this subsection, we evalu-
ate the performance of EffiCuts [35], DPDK-ACL, and Palmtrie+8 .
However, the implementation of EffiCuts does not support protocol
flags (e.g., TCP flags). Therefore, we exclude TCP flags from the
rule-sets to fairly compare these algorithms.

Table 4 summarizes the lookup performance for ClassBench
datasets. EffiCuts failed to build the data structure for ACL200K
and ACL500K. The results show that Palmtrie+8 significantly out-
performs EffiCuts. It runs 15.8–49.7 times faster than EffiCuts.
The results also show that Palmtrie+8 runs 1.07–3.22 times faster
than DPDK-ACL for 200K and 500K datasets. However, Palmtrie+8
is slower than DPDK-ACL on ACL1K, ACL10K, FW1K, FW10K,
FW50K, FW100K, and IPC1K. This is because DPDK-ACL builds an
optimized trie for each dimension of ACL rules such as IP address
prefixes and port ranges, although Palmtrie+8 is a general ternary
matching data structure. We will further investigate lookup perfor-
mance optimizations for Palmtries that do not sacrifice the build
time, such as a software pipelining technique [2], in the future.

4.4 Update Performance
Incremental updates are also vital for ACL matching algorithms,
as previously mentioned. As described in Section 3.6, the update
procedure of Palmtrie+

𝑘
is divided into two; 1) incremental updates of

Palmtrie𝑘 and 2) optimization and rebuild of Palmtrie+
𝑘
(compilation

part). Moreover, the existing algorithms, EffiCuts and DPDK-ACL,
do not support incremental updates. Therefore, we evaluate the

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

L
o

o
k
u

p
 r

a
te

 [
M

lp
s
]

ACL dataset

Sorted List
DPDK-ACL

Palmtrie6
Palmtrie8

Palmtrie
+

6
Palmtrie

+
8

(a) Uniform traffic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

L
o

o
k
u

p
 r

a
te

 [
M

lp
s
]

ACL dataset

Sorted List
DPDK-ACL

Palmtrie6
Palmtrie8

Palmtrie
+

6
Palmtrie

+
8

(b) Reverse-byte order scanning traffic

Figure 10: Lookup performance comparison for the uniform traffic and the reverse-byte order scanning traffic on various sizes
of campus network ACLs. The performance of Palmtrie+ runs faster than the sorted list and DPDK-ACL on extensive ACLs.
The sorted list outperforms the other algorithms on tiny ACLs.

10
-4

10
-2

10
0

10
2

10
4

10
6

 10 100 1000 10000 100000 1x10
6

C
o

n
s
u

m
e

d
 t

im
e

 [
s
]

of entries

DPDK-ACL
Palmtrie (basic)

Palmtrie6
Palmtrie8

Palmtrie
+

6
Palmtrie

+
8

Compilation of Palmtrie
+

8

Figure 11: Build time of DPDK-ACL, Palmtrie (basic),
Palmtrie6, Palmtrie8, Palmtrie+6, and Palmtrie+8, for the syn-
thetic campus network ACLs. The build time of Palmtrie
and its variants is less than 5 seconds while the build time
of DPDK-ACL for extensive ACLs is not acceptable.

time to build the data structure in this paper. For Palmtrie+
𝑘
, we

also measure the time of the compilation part, and we then discuss
the incremental update performance from the build time and the
compilation time.

The time to build each data structure for the campus network
ACLs is shown in Figure 11. It reveals that the build time of DPDK-
ACL for extensive ACLs is unacceptable. It takes more than ten
seconds for ACLs with no fewer entries than 9216. Moreover, it
takes more than three hours for large tables such as 𝐷14, 𝐷15, and
𝐷16, whose number of entries is more than 294 thousand. It is
entirely unacceptable even for the static configuration.

The build time of Palmtrie (basic) and Palmtrie𝑘 is the summation
of incremental updates for inserting all entries. A linear function
approximates it in Figure 11. This means that the insertion time of
Palmtrie (basic) and Palmtrie𝑘 is not dominated by the number of
existing entries in the data structure but by the number of entries
to insert. Palmtries6 and Palmtries8 take 1.29 and 2.14 seconds

for inserting all entries of 𝐷16, respectively. Therefore, we conjec-
ture that Palmtries6 and Palmtries8 can update an entry with a
microsecond order as they support incremental updates.

Palmtrie+
𝑘
does not support incremental updates, and conse-

quently, Palmtrie+
𝑘
requires the compilation from Palmtrie𝑘 . There-

fore, the build time, including the compilation time, is more criti-
cal. Figure 11 also shows the compilation time of Palmtrie+8 from
Palmtrie8. This figure demonstrates that the compilation time is
also proportional to the number of existing entries in the data struc-
ture. Looking at the ACL with one million entries (𝐷16), the total
build time of Palmtrie+8 is 3.21 seconds. The time to build Palmtrie8
by inserting all the entries is 2.14 seconds, and the compilation
of Palmtrie+8 from Palmtrie8 takes 1.07 seconds. It would be ac-
ceptable for most cases to perform the insertion (and deletion) in
bulk. However, it indicates that the insertion of one entry to a one-
million-entry ACL takes more than one second when the update
is performed one by one. Therefore, the applications of Palmtrie+
need to take into account the compilation frequency.

We also evaluate the update performance for ClassBench datasets.
Table 5 summarizes the update performance of EffiCuts, DPDK-ACL,
Palmtrie+8 , and the compilation time of Palmtrie+8 from Palmtrie8
for ClassBench datasets. The update performance of Palmtrie+8 in
this table is consistent with that for the campus network policy
ACLs; The build time and the compilation time are proportional
to the number of entries. This table shows that the build time of
Palmtrie+8 is notably shorter than that of EffiCuts and DPDK-ACL.
It is attributed to the simpleness of the data structure of Palmtrie𝑘
and Palmtrie+

𝑘
, while EffiCuts and DPDK-ACL require complex data

structure optimizations.

5 DISCUSSION
IPv6 support and performance evaluation: This paper has fo-
cused on IPv4 layer 3–4 ACLs. However, the penetration of IPv6
gains the importance of IPv6 network security. Therefore, it is cru-
cial to support IPv6 in ACL matching. The data structure of the
Palmtrie is not specific to IPv4. Hence, it is easy to extend it to
IPv6 from the viewpoint of the data structure. One modification to
support IPv6 is extending the key length to suffice IPv6 source and

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hirochika Asai

Table 5: Update performance comparisons for ClassBench
datasets. The build time is listed in seconds. The consumed
time for the compilation part of Palmtrie+8 is parenthesized.

Dataset EffiCuts DPDK-ACL Palmtrie+8
ACL1K 0.0231 0.0129 0.00568 (0.00171)
ACL10K 1.05 0.253 0.0355 (0.0116)
ACL50K 43.1 2.12 0.180 (0.0597)
ACL100K 169 4.72 0.362 (0.118)
ACL200K N/A 8.45 0.707 (0.231)
ACL500K N/A 21.5 1.76 (0.587)
FW1K 0.0221 0.816 0.00326 (0.000997)
FW10K 0.957 0.590 0.0270 (0.00847)
FW50K 20.1 9.40 0.127 (0.0394)
FW100K 77.3 3.29 0.254 (0.0786)
FW200K 301 6.60 0.507 (0.161)
FW500K 1690 148 1.27 (0.432)
IPC1K 0.0131 0.0274 0.00246 (0.000847)
IPC10K 1.88 5.14 0.0287 (0.00857)
IPC50K 42.2 1.94 0.136 (0.0420)
IPC100K 166 5.26 0.268 (0.0852)
IPC200K 664 9.68 0.535 (0.178)
IPC500K 4170 25.5 1.38 (0.470)

destination addresses and the other attributes such as port num-
bers and protocol flags. This paper has used a 128-bit key length
(𝐿 = 128) for the Palmtrie for IPv4 layer 3–4 ACL rules. To be a
more generic data structure for ACLs, e.g., IPv6 layer 2–4 ACLs,
a 512-bit key length is sufficient. However, a longer key length
degrades the lookup performance for the following two reasons: 1)
It increases the memory footprint of Palmtrie𝑘 nodes and Palmtrie+

𝑘
leaves to store the key. 2) The key comparison, i.e., the match()
function in Algorithms 1–3, consumes more CPU cycles. For ex-
ample, when changing the key length from 128 to 512 bits, the
memory utilization of Palmtrie+8 is increased by 66.7%, and the
lookup performance of Palmtrie+8 for ClassBench datasets slows
down by 5.48%–30.1%. Thus, the Palmtrie is feasible to support
IPv6, but performance degradation is expected. We will tackle the
challenge of the Palmtrie with the longer key length.

Another challenge on the IPv6 ACL matching study lies in the
performance evaluation. We lack public IPv6 datasets on ACLs
and traffic. Moreover, ACL rules and traffic patterns on IPv6 have
not been well researched. ClassBench used in this paper does not
support IPv6 dataset generation. To accelerate the research on IPv6
ACL matching, we need more public datasets and models on IPv6
ACL rules and traffic patterns.

Real-world deployment considerations: The evaluation re-
sults reveal that Palmtrie+8 does not always achieve the best lookup
performance. For example, the sorted list outperforms Palmtries
on tiny ACLs. Therefore, Section 4.3 practically suggests using the
sorted lists for tiny ACLs rather than Palmtries. As shown in Sec-
tion 4.4, the build time of Palmtrie8 is shorter than one millisecond
for the campus network policy ACLs no larger than𝐷5 (576 entries).
Thus, the time to switch the internal data structure and algorithm

between the sorted list and the Palmtrie8 on a threshold around 100
entries is negligible. We can also switch the data structure between
Palmtrie6 and Palmtrie8 in a sub-second order on ACLs with no
more than 10 thousand entries. Hence, we can dynamically choose
the best data structure and algorithm from the sorted and Palmtrie
variants for an ACL, although we need to avoid the flapping of data
structure switching at a threshold. However, switching between
DPDK-ACL and Palmtrie variants is challenging because of the
unacceptable build time of DPDK-ACL for extensive ACLs. Instead
of using DPDK-ACL, we will look at the datasets where DPDK-ACL
performs better and analyze the optimization techniques of DPDK-
ACL that contribute to the performance, and then look for further
optimizations of the Palmtrie to improve the performance.

Comparisons with decision tree-based packet classifica-
tion algorithms: As presented in Section 4.3, EffiCuts is relatively
slow on commodity CPUs. The decision tree-based packet classi-
fication algorithms such as EffiCuts and NeuroCuts are designed
to be executed on hardware using SRAM or DRAM. The hardware
implementation allows complex logic execution on tree traversals
and pipelined memory access. Therefore, the performance of these
algorithms has been evaluated by the tree depth or the memory
access count instead of lookup rates.

We have not compared the Palmtrie+ with NeuroCuts [19] be-
cause the public code of NeuroCuts is in Python, and consequently,
it is hard to measure lookup rates. Therefore, we do not directly
compare the performance with NeuroCuts in this paper. According
to the paper [19], NeuroCuts improves the median performance by
only 52% over EffiCuts. As Palmtrie+8 runs 15.8–49.7 times faster
than EffiCuts, we conjecture that Palmtrie+

𝑘
outperforms NeuroCuts

as well as EffiCuts,

6 CONCLUDING REMARKS
We proposed a practical algorithm for ACLs named Palmtrie to
solve the ternary matching problem. The basic Palmtrie achieved
the computational complexity of O(𝑛log3 2) for lookup. A challenge
on Palmtries was to support a multi-bit stride to improve the lookup
performance by reducing the height of the trie. We devised the
multi-bit stride extension and proposed the Palmtrie+ with vari-
ous optimization techniques. We demonstrated that the Palmtrie
outperformed the existing algorithms, the sorted list, EffiCuts, and
DPDK-ACL, on extensive ACLs, while the naive sorted list runs
faster than the Palmtrie on tiny ACLs. The Palmtrie+8 achieved
1.05–4.76 times faster lookup performance than DPDK-ACL on
the campus network ACLs. It also achieved good build time (e.g.,
less than 5 seconds for an ACL with one million entries) while
DPDK-ACL did not. A Palmtrie is proven to be a scalable and fast
algorithm that solves the ternary matching problem. We expect
various applications of the Palmtrie, such as flow monitoring [8].

ACKNOWLEDGMENTS
This work has been motivated by the need for real-world network
operations. I am grateful to Shin Miyakawa, Yasuhiro Ohara, and
Masakazu Asama for their generous support in the early stage of
this work. I also thank the anonymous reviewers and shepherd for
their invaluable comments on our paper.

Palmtrie: A Ternary Key Matching Algorithm for IP Packet Filtering Rules CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REFERENCES
[1] B. Agrawal and T. Sherwood. 2008. Ternary CAM Power and Delay Model: Ex-

tensions and Uses. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 16, 5 (May 2008), 554–564. https://doi.org/10.1109/TVLSI.2008.917538

[2] Hirochika Asai. 2019. Deep Pipelining: Efficient Pipelining of Network Function
Chains with Coroutines. In 2019 IEEE Conference on Network Softwarization
(NetSoft). 324–332. https://doi.org/10.1109/NETSOFT.2019.8806673

[3] Hirochika Asai and Yasuhiro Ohara. 2015. Poptrie: A Compressed Trie with
Population Count for Fast and Scalable Software IP Routing Table Lookup. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication (London, United Kingdom) (SIGCOMM ’15). ACM, New York, NY, USA,
57–70. https://doi.org/10.1145/2785956.2787474

[4] F. Baboescu, Sumeet Singh, and G. Varghese. 2003. Packet classification for core
routers: is there an alternative to CAMs?. In IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE
Cat. No.03CH37428), Vol. 1. 53–63 vol.1.

[5] Masanori Bando, Yi-Li Lin, and H. Jonathan Chao. 2012. FlashTrie: Beyond
100-Gb/s IP Route Lookup Using Hash-based Prefix-compressed Trie. IEEE/ACM
Trans. Netw. 20, 4 (2012), 1262–1275. https://doi.org/10.1109/TNET.2012.2188643

[6] R. Bayer and E. M. Mccreight. 1972. Organization and Maintenance of Large
Ordered Indexes. Acta Inf. 1, 3 (Sept. 1972), 173–189. https://doi.org/10.1007/
BF00288683

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[8] B. Claise, B. Trammell, and P. Aitken. 2013. Specification of the IP Flow Informa-
tion Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011
(INTERNET STANDARD). http://www.ietf.org/rfc/rfc7011.txt

[9] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2001. Introduction to Algorithms (2nd ed.). McGraw-Hill Higher Education.

[10] Alberto Dainotti, Alistair King, kc Claffy, Ferdinando Papale, andAntonio Pescapè.
2012. Analysis of a "/0" Stealth Scan from a Botnet. In Proceedings of the 2012
Internet Measurement Conference (Boston, Massachusetts, USA) (IMC ’12). ACM,
New York, NY, USA, 1–14. https://doi.org/10.1145/2398776.2398778

[11] DPDK Project. 2018. DPDK: Data Plane Development Kit. http://dpdk.org.
[12] Will Eatherton, George Varghese, and Zubin Dittia. 2004. Tree Bitmap: Hard-

ware/Software IP Lookups with Incremental Updates. ACM SIGCOMM Comput.
Commun. Rev. 34, 2 (2004), 97–122. https://doi.org/10.1145/997150.997160

[13] ETSI NFV Industry Specification Group. 2014. Network Functions Virtualization
– White Paper #3. ETSI (2014).

[14] P. Gupta, S. Lin, and N. McKeown. 1998. Routing lookups in hardware at memory
access speeds. In INFOCOM ’98. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, Vol. 3. 1240–1247
vol.3. https://doi.org/10.1109/INFCOM.1998.662938

[15] Pankaj Gupta and Nick McKeown. 1999. Packet classification using hierarchical
intelligent cuttings. In Hot Interconnects VII, Vol. 40.

[16] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Distributed Computing:
22nd International Symposium, DISC 2008, Arcachon, France, September 22-24, 2008.
Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Hopscotch
Hashing, 350–364. https://doi.org/10.1007/978-3-540-87779-0_24

[17] Weirong Jiang, Qingbo Wang, and V.K. Prasanna. 2008. Beyond TCAMs: An
SRAM-Based Parallel Multi-Pipeline Architecture for Terabit IP Lookup. In IEEE
INFOCOM. 1786–1794. https://doi.org/10.1109/INFOCOM.2008.241

[18] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: Sorting and
Searching (2nd ed.). Addison Wesley Longman Publishing Co., Inc.

[19] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural Packet Classification.
In Proceedings of the ACM Special Interest Group on Data Communication (Beijing,
China) (SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 256–269. https://doi.org/10.1145/3341302.3342221

[20] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and D. McPherson. 2009.
Dissemination of Flow Specification Rules. RFC 5575 (Proposed Standard). http:
//www.ietf.org/rfc/rfc5575.txt Updated by RFC 7674.

[21] A.J. McAuley and P. Francis. 1993. Fast Routing Table Lookup using CAMs. In
IEEE INFOCOM, Vol. 3. 1382–1391. https://doi.org/10.1109/INFCOM.1993.253403

[22] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.. In USENIX winter, Vol. 46.

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69–74. https://doi.org/10.1145/1355734.1355746

[24] Donald R. Morrison. 1968. PATRICIA—Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric. J. ACM 15, 4 (Oct. 1968), 514–534. https:
//doi.org/10.1145/321479.321481

[25] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[26] Jiang Qian, Susan Hinrichs, and Klara Nahrstedt. 2001. ACLA: A framework
for access control list (ACL) analysis and optimization. In Communications and
Multimedia Security Issues of the New Century. Springer, 197–211.

[27] Luigi Rizzo. 2012. netmap: a novel framework for fast packet I/O. In Proceedings of
the 2012 USENIX conference on Annual Technical Conference. USENIX Association,
9.

[28] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. [n.d.]. Linux
Socket Filtering aka Berkeley Packet Filter (BPF). https://www.kernel.org
/doc/Documentation/networking/filter.txt.

[29] Robert Sedgewick. 1997. Algorithms in C, Parts 1–4: Fundamentals, Data Structures,
Sorting, Searching (3rd ed.). Addison-Wesley Professional.

[30] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003. Packet
Classification Using Multidimensional Cutting. In Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (Karlsruhe, Germany) (SIGCOMM ’03). Association for Computing
Machinery, New York, NY, USA, 213–224. https://doi.org/10.1145/863955.863980

[31] Keith Sklower. 1991. A Tree-Based Packet Routing Table for Berkeley Unix. In
USENIX Winter Conference. 93–104.

[32] V. Srinivasan and George Varghese. 1998. Faster IP Lookups Using Controlled
Prefix Expansion. In Proceedings of the 1998 ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems (Madison, Wis-
consin, USA) (SIGMETRICS ’98/PERFORMANCE ’98). Association for Computing
Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/277851.277863

[33] D. E. Taylor and J. S. Turner. 2007. ClassBench: A Packet Classification Benchmark.
IEEE/ACM Transactions on Networking 15, 3 (2007), 499–511.

[34] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, and et al. 2019.
Safely and Automatically Updating In-Network ACL Configurations with Intent
Language. In Proceedings of the ACM Special Interest Group on Data Communi-
cation (Beijing, China) (SIGCOMM ’19). Association for Computing Machinery,
New York, NY, USA, 214–226. https://doi.org/10.1145/3341302.3342088

[35] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010. Effi-
Cuts: Optimizing Packet Classification for Memory and Throughput. In Pro-
ceedings of the ACM SIGCOMM 2010 Conference (New Delhi, India) (SIGCOMM
’10). Association for Computing Machinery, New York, NY, USA, 207–218.
https://doi.org/10.1145/1851182.1851208

[36] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu, Alex X. Liu, Qi Li, and Laurent
Mathy. 2014. Guarantee IP Lookup Performance with FIB Explosion. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIGCOMM
’14). ACM, New York, NY, USA, 39–50. https://doi.org/10.1145/2619239.2626297

[37] F. Zane, G. Narlikar, and A. Basu. 2003. CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines. In IEEE INFOCOM, Vol. 1. 42–52. https://doi.org/10.1109/
INFCOM.2003.1208657

[38] Marko Zec, Luigi Rizzo, and Miljenko Mikuc. 2012. DXR: Towards a Billion
Routing Lookups Per Second in Software. SIGCOMM Comput. Commun. Rev. 42,
5 (Sept. 2012), 29–36. https://doi.org/10.1145/2378956.2378961

[39] Kai Zheng, Chengchen Hu, Hongbin Lu, and Bin Liu. 2006. A TCAM-based
Distributed Parallel IP Lookup Scheme and Performance Analysis. IEEE/ACM
Trans. Netw. 14, 4 (Aug. 2006), 863–875. https://doi.org/10.1109/TNET.2006.
880171

[40] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.
2013. Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (Santa Barbara, California, USA) (CoNEXT ’13). ACM, New York,
NY, USA, 97–108. https://doi.org/10.1145/2535372.2535379

A ARTIFACTS
As described in Section 4, the code of the Palmtrie is available at
https://github.com/pixos/palmtrie. This repository does not include
datasets for the evaluation but those for testing.

The archive file of the code and the datasets to reproduce the key
results in this paper, palmtrie-conext.tar.gz, is also available as
an auxiliary material of this paper on the ACM Digital Library page.
README.md in this archive describes the instructions to build the
software and conduct the evaluation.

https://doi.org/10.1109/TVLSI.2008.917538
https://doi.org/10.1109/NETSOFT.2019.8806673
https://doi.org/10.1145/2785956.2787474
https://doi.org/10.1109/TNET.2012.2188643
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
http://www.ietf.org/rfc/rfc7011.txt
https://doi.org/10.1145/2398776.2398778
https://doi.org/10.1145/997150.997160
https://doi.org/10.1109/INFCOM.1998.662938
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1109/INFOCOM.2008.241
https://doi.org/10.1145/3341302.3342221
http://www.ietf.org/rfc/rfc5575.txt
http://www.ietf.org/rfc/rfc5575.txt
https://doi.org/10.1109/INFCOM.1993.253403
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/277851.277863
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/1851182.1851208
https://doi.org/10.1145/2619239.2626297
https://doi.org/10.1109/INFCOM.2003.1208657
https://doi.org/10.1109/INFCOM.2003.1208657
https://doi.org/10.1145/2378956.2378961
https://doi.org/10.1109/TNET.2006.880171
https://doi.org/10.1109/TNET.2006.880171
https://doi.org/10.1145/2535372.2535379
https://github.com/pixos/palmtrie

	Abstract
	1 Introduction
	2 Related Work
	3 Palmtrie
	3.1 Ternary Matching Problem and Access Control Lists
	3.2 Patricia Trie (Revisited)
	3.3 Basic Idea of Palmtrie
	3.4 Multi-bit Stride Extension
	3.5 Practical Optimization Techniques
	3.6 Palmtrie+: Lookup Optimization with Population Count

	4 Evaluation
	4.1 ACL Datasets and Traffic Patterns
	4.2 Effect of Optimizations in Palmtrie
	4.3 Lookup Performance
	4.4 Update Performance

	5 Discussion
	6 Concluding Remarks
	Acknowledgments
	References
	A Artifacts

